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Abstrsd. We analyse a mathematical model of reaction limited catalytic reaction an a 
one-dimensional lattice, which can be transformed into a system of random walkers with 
pair annihilation and spontaneous branchings. Time evolution of the correlation function 
and reanion rate are obtained theoretically and compared with numerical results. 

Catalytic reactions have been attracting much attention from statistical physicists 
recently because of their peculiar characteristics due to their irreversible nature [1-8]. 
The oxidation of carbon monoxide on a platinum surface is one of the most typical 
catalytic reactions. The reaction follows the so-called Langmuir-Hinshelwood mechan- 
ism, that is 

CO(gas)+CO(ads) 

O,(gas) + 2O(ads) 

CO(ads)+O(ads) +CO,(gas) 

meaning that when a CO molecule adsorbed on a surface is close enough to 0, they 
react forming a CO, molecule which diffuses from the surface, leaving two vacant sites. 

Monomer-dimer models of heterogeneous catalysis first introduced by Ziff, Gulari 
and Barshad (ZGB) indicate the existence of dynamical phase transitions between the 
poisoned phase where all sites are covered by one species and the steady state where 
reactions continue forever [ 1.9.101. The ZGB model is defined in the special case where 
the reaction occurs instantaneously (i.e. the adsorption limited case). The model has 
been generalized by Considine et a/ to allow a finite reaction rate and it has been 
shown that no steady state exists in the opposite limit, namely the reaction limited 
case [ll]. 

In the case where two species are injected, both in the form of a monomer 
(monomer-monomer models), it is known that no steady state exists in one and two 
dimensions if the rate of spontaneous desorption is zero [ 121. When desorption occurs 
with a finite rate we always have a steady state. A monomer-monomer model in the 
reaction limited case has been analysed theoretically by a mean-field approach [13,14] 
and recently by solving the master equation in a rigorous manner [15]. 

In this letter we focus our attention on  the time evolution of a one-dimensional 
catalytic surface in the reaction limited case including both monomer-monomer and 
monomer-dimer cases. We first show that the catalysis model can be transformed into 
a model of random walkers having a pair annihilating and branching nature identical 
to the branching annihilating random walk [16-181. By solving the random walker 
model we derive a rigorous equation for the evolution of correlation function which 
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is essentially equivalent to that in [151. We show that the system always converges to 
the poisoned state in the absence of spontaneous desorption. The decay of the total 
reaction rate follows either a power law, for equal injection of A and B, or an exponential 
for different injection rates. When spontaneous desorption occurs with a finite rate the 
steady state realizes with an exponentially decaying spatial correlation. 

We consider a catalytic reaction on a one-dimensional discretized space and time. 
The initial condition is that two elements A and B are adsorbed on the lattice at 
random, and the time step is evolved by repeating the following two processes. 

(1) The reaction process: a pair of sites is chosen randomly. If the pair is composed 
of different species the pair makes an AB molecule and desorps leaving two vacant 
sites. In the other case nothing happens. 

(2) The adsorption process: the vacant sites are occupied immediately by either A 
or B. 

Since these two processes are carried out successively we can simplify the evolution 
rule by a replacement of AB (or BA) pair by either AA, AB, BA or BB with probabilities 
p, q, r and s, respectively (p  + q + r + s = 1): 

prob P 

(BB prob s. 

In the case of independent monomer-monomer injection p =pApA, q =pAps. r = pepA 
and s = p e p e ,  where pA (or pB) denotes the probability of adsorbing an A (or B) 
molecule. When either A or B is injected in the form of dimers, then q = r = 0. So, our 
process allows monomer-monomer, monomer-dimer and dimer-dimer cases. 

Let Qj( t )  = I (or -1) denote the state of site! being occupied by A (or B) at time 
step 1. The configuration of the AB pair is expressed conveniently by introducing a 
new function m,(f) as 

It is obvious that mj(t) = 1 when the AB or BA pair is located on thejth and (j+ 1)th 
sites, and mj( f )  = 0 otherwise. The number density of sites satisfying mj( f )  = 1, P (  m, = 
1, I ) ,  is considered to be proportional to the total reaction rate. 

By regarding a pair AB or B A  as an imaginary particle, the above catalysis model 
can be transformed into the following diffusion-reaction model of imaginary particles. 
Figure 1 illustrates the possible configurations after a reaction. Here an imaginary 
particle is denoted by 0. From this figure the evolution rules for the particles are given 
as follows. 

( I )  Choose a site randomly. Assume that we have found a particle at the j t h  site. 
The particle will either stay on the same site, hop onto the site j +  1, hop onto the site 
j- 1, or split into three particles on the sites j -  I ,  j and j +  1. The probability of each 
realization is q, p .  s and r, respectively. 

(2) Whenever two particles try to shear a site, they vanish immediately (see figure 
l ( b ) ,  branch (3)). Note that { Q j ( t ) )  and [ - Q j ( t ) )  give the same configuration of 
imaginary particles, so the correspondence between {Qj ( t ) ]  and { m j ( t ) ]  becomes 
one-to-one by fixing the sign of a site in { Q j ( f ) ) ,  This set of evolution rules is identical 
to the branching annihilating random walkers. 
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Figure 1. lllustration of the dynamics of configur- 
ations. Each event occurs with probabilityp, q. rand 
s, respectively. A solid circle indicates an imaginary 
particle. ( b )  (3) shows the case of pair annihilation. 

Figure 2. Dynamics of an imaginary panicle, corn- 
posed of ( I )  staying an the same site, (2) diffusing, 
(3) branching and (4) annihilating. 

The dynamics of mj(f) in a lattice of size N is given probabilistically as 

prob 1 - 2 ( p + s +  r ) / N  

[ m , ( f ) + m , + , ( f )  mod2 prob ( s  + r ) / N  

Vlhere !he pzir 2nnihi!ztion process is represented by the =se n f m d  2 , Z d  the he..a&ry 
condition is periodic (see figure 2 ) .  From ( 2 )  it is obvious that we cannot obtain the 
probability of finding a particle at time step f + 1, p(m, = 1, f +  I) ,  without the informa- 
tion for two bodies, m , ( f ) + m , _ , ( f )  and m,( f )+m,+ , ( t ) .  The same difficulty occurs for 
the two bodies, i.e. we cannot close the equation by two bodies. This is the usual 
trouble we encounter when we analyse multi-particle systems. 

In order to treat this many-body effect rigorously we introduce the sum of k-bodies, 

(3 )  M,,k = m,( f ) +  m,+,( f ) + ,  . . + m,+*_,( 1 )  mod 2 

which is equal to 1 (or 0) when the number of particles in the block is odd (or even). 
The time evolution of M,.,(f)  is given as follows; 

prob I - Z ( p + s + r ) / N  
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Because the system is translationally invariant we can omit the j-dependence for 
statistical quantities such as probability of finding odd number of particles in a block 
of size k at time step t, Pk( I ) .  In the symmetric case of p = s we can write down the 
evolution equation for Pk(t) directly from (2) and (4). 

and for k 2. 

with the boundary condition P N ( t )  =O. 

simply as, 
The correlation function Ck( t )  = (Qj( t ) Q j + k ( t ) )  can be represented in terms of Pk( f )  

C k ( t )  = 1 - 2 P , ( t )  (6) 

because M,,(t)= 1 (or -1) means Qj(f)Qj+k(t)=-l (or +l) .  Substituting (6) into 
( 5 n ) ,  (Sb) ,  we have, 

L 
C d t +  1)- Cdr) =; [ ~ - ( 2 p + r ) C , ( r ) + ( ~ +  r ) G ( t ) l  ( 7 a )  

1* 

and for k 2, 

Ck(l  + 1) - C, ( t )  = p f i [ C k d f )  -2C, ( t )+  Ck+,(1)1 (76 )  N 

with the boundary condition C N ( t ) =  1 .  
Equations ( 7 a )  and (7b) make a set of discretized diffusion equations in (k,  [)-space. 

It is easy to show that the only stationary solution for p # 0 is C ,  = C, = . . . = CN = 1, 
which means a poisoned state. In other words, we do not have the steady state. 

The decay of the total reaction rate can be estimated in the following way. By 
taking a continuum limit with respect to r and t we get a diffusion equation, 

with the boundary condition CO( t )  = 1, where D = 2( p + r ) /  N A t  is a diffusion constant. 
The solution of (8) is given for large t as 

k 
Ck( 1 )  = 1 -- “ 

The total reaction rate is proportional to P ( m j  = 1,t). 

l - C l ( t ) , N  1 - 
2 ‘ 2  J4Dr P(mj = 1, t )  = 

(9) 

namely, it decays proportional to t-”’. This theoretical estimation can be confirmed 

A poisoned state becomes unstable if we take the effect of spontaneous desorption 
into account. As we are considering the situation where adsorption takes place instan- 
taneously, a desorption of molecule on the surface means a replacement of A (or B) 

a6 show.n in figure 3, 
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Figom 3. Numerical results for the symmetric adsorption rates with non-spontaneous 
desorption. The decay of the total reaction rate is plotted on a log-log scale: (1) p = q = I = 
s=O.ZS (solid curve), and (2) p=O.1, q = s  and r=0.4 (dashed curve). The slope of the 
line is -i. Here, the system size is I@. 

by B (or ‘4). This process can be viewed as a spontaneous pair-creation of imaginary 
particles. Noting that the value of Qj( f )Qj+*( t )  is affected only when either Qj(I) or 
Qj+*(I) desorbs, we can readily have the equation for the correlation function with 
the replacement rate Pd as, 

4Pd C,( I +  1) - C , ( t )  = -- C,( I )  [ p  - ( 2 p  + r )  C , ( I )  + ( p  + r )C, ( t ) ]  (1  l o )  N 

and for k 2,  

This set of equations is identical to that in [ I S ]  which is derived directly from the 
master equation. 

The poisoned state solution C k ( t )  = 1 (for k = 1,2 , .  . . , N) is obviously not the 
stationary solution for (I la)  and (11 b) ,  and the following exponentially decaying 
correlation is obtained by using the continuum limit approximation for N + m: 

Cdt) = e v ( - k / k J  ( 1 2 )  

where the characteristic length k, is given by - 
k. = $2. 

Thus we have a steady state where A and B molecules are mixed, making clusters of 
size about k, and the catalytic reaction continues forever. The steady state reaction 
rate is given as 

(14) 

This result shows a good agreement with simulations as demonstrated in figure 4. . 
Now we consider non-symmetric cases ( p  # s). Intuitively if p > s, then the surface 

will be quickly occupied by A and the clusters of B molecule will diminish monotonically 
on average. In this situation we have to distinguish the pair AB and BA by different 
imaginary particles because the imaginary particle for a AB pair has a tendency to 

P(m, = I ,  I )  = ;{ 1 - exp( l/kJ}. 
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Figure 4. Numerical results for the decay of the total reaction rate in the case of p = q = r = 
s=O.25 with ((1) Pd=O.5, ( b )  Pd =0.3, ( e )  Pd=O.l. Dashed lines show the theoretical 
values in the steady state. 

move to the right and that of BA has a mean drift velocity to the left. The drift velocities 
for both directions are proportional to Ip - SI. We cannot use the many-body technique 
here, so we assume an exponential decay for p(m,  = 1, t )  with the decay rate propor- 

condition and the lifetimes of the clusters are proportional to their sizes on average: 

(15)  

where c is a constant. As shown in figure 5 this estimation gives good results for 
relatively large Ip - SI. For smaller 1p - S I  the decay shows an intermediate form between 

In conclusion, we analysed a one-dimensional reaction-limited catalysis model and 
derived the time evolution equation for the correlation function. In the absence of 
spontaneous desorption no active steady-state exists and the reaction rate decays 
monotonically following the power law, I-"*. When injection is non-symmetric we 
found an exponential decay in the reaction rate. 

tiofia! to [ p - s !  bPCEQSP !he Size of &C!U&yS d&ri.bctes ..pofiPn!ia!!g a! the ifiitia! 

Pk( m, = 1, t )  oc exp( -cI p - S I  t )  

the power !IF, ! P ' Z ,  and the exponential 

Figure 5. Nbmerieal rcsults for non-symmetric rates with no spontaneous desorption. Tbhc 
decay of reaction rate is plotted on a semilog scale. ( a )  q = r = 0 . 2 5 ,  p=O.3, r=0.2  ( b )  
q=r=0 .25 ,p=0 .4 .  s = O . I  ( e )  q = r = 0 . 2 5 , p = 0 . 5 ,  s=O. 
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